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Abstract
We investigate photon–phonon-assisted tunneling through a double quantum dot
molecule using a well-established non-equilibrium Green function technique.
The molecule is sandwiched between two ideal electrodes and the electron
at each dot of the molecule interacts independently with Einstein phonons.
The many-body problem of electron–phonon interactions is mapped onto a
multichannel one-body problem. Together with these resonant peaks of the two-
level system, additional satellite peaks due to the photon absorption (emission)
process and/or phonon-assisted tunneling are observed in the transmission
spectrum. Furthermore, the time-average current and differential conductance
are calculated. The feasibility of manipulating the phonon-assisted tunneling
with photon absorption (emission) processes by the voltage bias is also
discussed.

1. Introduction

The advancement of nano-technology in the last decade has made it possible to design nano-
scale single-molecular devices based on quantum dot (QD) structures with controllable size and
shape. Experiments based on these single-molecular systems open up a new view of quantum
signal processing as well as quantum optical and electrical processes, and as a result of the
definite evidence of quantum transport in these systems the properties of tunneling through
a mesoscopic system have regained dramatic theoretical [1–12] and experimental [13–15]
interest. Theoretical efforts have been made to describe the physical mechanisms of the
tunneling, and a variety of methods, including the Green function techniques [3–6], the Fermi
golden rule [7–9], and non-equilibrium linked cluster expansion [10], have been well developed
to address the related concerns. Electron–phonon interaction (EPI) is of the great importance
in the tunneling event within the quantum dot molecule [15–18].

A double coupled QD system sandwiched between two ideal leads with dot–dot and dot–
lead coupling could be taken as a good artificial molecule model for studying the mescoscopic
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tunneling properties, as the energy level in such a multiple gated structure could be designed
for the strength of the interdot coupling and the tunneling rate for the leads [14–18] while
the electron occupation of the states could be manipulated by the dc bias voltage [15, 16].
The many-body problem in a system with some inelastic scattering process, such as phonon
absorption/emission, could be mapped onto a solvable multichannel single-electron scattering
problem as done first by Bonca and Trugman [2]. With this technique, some theoretical
investigations of phonon effects on the electron tunneling through mesoscopic systems with
electron–phonon interaction have been reported [2, 3, 8, 11, 12], where the electron–phonon
interaction is described either by the Holstein model [19] (where the electrons are coupled with
an Einstein phonon mode at each site) or by the Su–Schreiffer–Heeger (SSH) model [20] (where
the electrons are coupled with the phonon modes on bonds). In a previous work [1], the present
authors discussed the tunneling properties in the double QD system with electron–phonon
interaction and found the peaks of the differential conductance according to the phonon-assisted
tunneling.

In the presence of a microwave (MW) irradiation field, photon absorption/emission
processes were reported to be influential on the tunneling in a single QD molecule, and a
theoretical work [7] found that together with the EPI, the photon absorption/emission would
induce additional peaks in the nonlinear differential conductance. Recent quantum transport
measurements on a double QD molecule with external microwave irradiation demonstrated
the existence of a photon-assisted tunnel (PAT) [16], providing us a new viewpoint for
understanding the essence of the influence of EPI on the transport properties in the molecule.
Theoretically, the tunneling through the double QD system with EPI in the presence of a MW
field could be treated with the same method used by Dong et al [7] in a single QD system. With
this method, the many-body problem could be transformed exactly into a one-body scattering
problem with representation of the original Hamiltonian in the electron–phonon coupled Fock
space [2]. Further, the time-dependent and time-average transmissivity and current could
be calculated by the non-equilibrium Green function in the framework of Büttiker scattering
theory.

In this work we focus on the photon–phonon-assisted tunneling effect in a coupled double
QD molecule. We use the nonlinear Green function to calculate the differential conductance
and time average current with extension of the method to a single QD molecule and discuss the
contribution of the photon absorption/emission processes on the tunneling effect in a double
QD molecule. In this study, the inelastic processes due to phonon absorption/emission are
addressed by the Holstein model and the irradiation microwave field is treated with the adiabatic
approximation. Compared with our previous study on phonon-assisted tunneling in a similar
model without an external microwave irradiation field [1], we focus on the effect of photon
absorption/emission on tunneling through a double coupled QD system as well as its effects on
the phonon-assisted resonances.

The rest of the paper is organized as follows. In section 2 we introduce the Hamiltonian
for resonant tunneling and review the main result of the Keldysh theory, used in this work.
In section 3 we give the numerical results from the calculation within the framework given in
section 2. In section 4 we give a summary of our results with a brief discussion.

2. Theoretical method

The Hamiltonian H of the system we considered in this work can be written as follows [1, 7]:

H = HM + Hlead + Hint, (1a)
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where

HM = ω0

2∑

i=1

b†
i bi − t (c†

1c2 + c†
2c1) + λ

2∑

i=1

c†
i ci(b

†
i + bi), (1b)

describes a double QD molecule, in which each dot has a single electronic level and the electron
at the level couples with an Einstein phonon mode (with the same phonon frequency ω0), ci

†

(ci ) denotes the electron creation (annihilation) operator on site i and b†
i (bi ) for the phonon

modes (i = 1, 2), t is the hopping constant between the two dots and λ is the coupling between
the electron and phonon at the same site. The second term of the Hamiltonian H

Hlead =
∑

k,η∈L ,R

εkη(t)c
†
kηckη, (1c)

describes the two isolated leads, c†
kη (ckη) creates (annihilates) an electron with momentum k

in the η(= L/R) lead. The MW field irradiating the leads is described by a rigid shift of the
single-electron energy spectrum under the adiabatic approximation ε0

kη → εkη(t) = ε0
kη+�η(t)

(�η(t) = �η cos �t), where ε0
kη is the time-independent single electron energy without a MW

field. �η is the irradiation strength and � is the frequency of the MW field. The last term in
the Hamiltonian H is the interaction between the molecule and the leads

Hint = VkL ,1(c
†
kL c1 + H.c.) + VkR,2(c

†
kRc2 + H.c.), (1d)

where Vkη,i stands for the tunneling coupling between the molecule and the ηth lead.
The transport property can be meaningfully defined as a multichannel scattering

problem [2], for which we define a polaron state [2, 7, 8, 11]

|i, n1, n2〉 = c†
i

(b†
1)

n1

√
n1!

(b†
2)

n2

√
n2!

|0, 0〉, (n1, n2 � 0, i = 1, 2), (2)

where the electron occupies the i th dot and there are n1 and n2 phonons in the two dots in the
molecule, respectively. Similarly,

|kη, n1, n2〉 = c†
kη

(b†
1)

n1

√
n1!

(b†
2)

n2

√
n2!

|0, 0〉, (n1, n2 � 0, i = 1, 2) (3)

describes the many-body system of the leads consisting of a single electron with n1 and n2

phonon excitations on two dots, respectively. It should be noted that such definitions in
equations (2) and (3) map a many-body problem onto a multichannel one-body problem, where
only one particle exists in the whole system. The pseudo-channel α weighted by the probability
P(α) = P(n1)P(n2) with P(ni ) = (1 − e−βω0 )e−ni βω0 (i = 1, 2), which is a probability of
the phonon number state |n1, n2〉 at finite temperature T . Furthermore we write these Dirac
brackets as operators [7, 8]:

c†
i,n1,n2

= |i, n1, n2〉, c†
kη,n1,n2

= |kη, n1, n2〉.
Then we could map the many-body problem onto a single-particle problem [2, 3, 7, 8, 11], and
obtain the effective Hamiltonian as

Heff =
∑

n1,n2

{ω0(n1c†
1,n1,n2

c1,n1,n2 + n2c†
2,n1,n2

c2,n1,n2) − t (c†
1,n1,n2

c2,n1,n2 + H.c.)

+ λ
√

n1 + 1(c†
1,n1+1,n2

c1,n1,n2 + H.c.) + λ
√

n2 + 1(c†
2,n1,n2+1c2,n1,n2 + H.c.)}

+
∑

kη,n1 ,n2

εkη,n1,n2(t)c
†
kη,n1 ,n2

ckη,n1,n2

+
∑

k,n1,n2

{V n1,n2
kL ,1 (c†

kL ,n1,n2
c1,n1,n2 + H.c.) + V n1,n2

kR,2 (c†
kR,n1,n2

c2,n1,n2 + H.c.)}, (4)
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with εkη,n1 ,n2(t) = εkη,α(t) = εkη(t) + αh̄ω0. V n1,n2
kη,i (= V α

kη,i ) is the coupling between the
αth (|n1, n2〉) pseudo-channel in the η lead and the coupled QDs. Naturally, the Hamiltonian
is infinite; we can truncate the Fock space by allowing a certain number of phonons for each
mode to obtain a very accurate solution. The explicit commutators of these operators can be
easily established from the definition of these Dirac brackets [7]:

{ci,n1,n2, c†
j,m1,m2

} = δi jδn1m1δn2m2 , {ckη,n1,n2, c†
kη′ ,m1,m2

} = δηη′δn1m1δn2m2 .

Starting from the effective Hamiltonian of equation (4), the transport property through the
mesoscopic structure can be described by the non-equilibrium Keldysh Green function [21–23]
and the tunneling current JLα(t) is given as:

JLα(t) = ie

h̄

∑

k

[V α
kL ,1〈c†

kL ,αc1,α〉 − V α∗
kL ,1〈c†

1,αckL ,α〉]

= ie

h̄

∑

k

[V α
kL ,1G(α,α)<

1,kL (t, t) − V α∗
kL ,1G(α,α)<

kL ,1 (t, t)].

Using the Keldysh Green function, one has the Dyson equation

G(α,α)<

i,kL (t, t ′) =
2∑

j=1

∫
dt1 V α∗

kL , j [G(α,α)r
i j (t, t1)g(α,α)<

kL (t1, t ′) + G(α,α)<

i j (t, t1)g(α,α)a
kL (t1, t ′)],

in which g(α,α)<,a
kL are the free-electron Green functions in the αth pseudo-channel of lead L

without coupling to the central region. In the steady state the Green function depends only on
the time difference2, so the Fourier transformation gives G(α,α′)r(a)

i, j (ε) = 〈〈ci,α; c†
j,α′ 〉〉r(a)

ε and

G(α,α′)<(>)
i, j (ε) = 〈〈ci,α; c†

j,α′ 〉〉<(>)
ε [21].

By using the equation of motion (EOM) technique [25], we have

[ε − n1h̄ω0 − n2h̄ω0 − �̄r
n1n2

(ε)]Ḡ(n1n2,m1m2)r
1, j = δ1, jδn1,m1 δn2,m2 − t Ḡ(n1n2,m1m2)r

2, j

− λ
√

n1Ḡ(n1−1n2,m1m2)r
1, j − λ

√
n1 + 1Ḡ(n1+1n2,m1m2)r

1, j , (5)

[ε − n1h̄ω0 − n2h̄ω0 − �̄r
n1n2

(ε)]Ḡ(n1n2,m1m2)r
2, j = δ2, jδn1,m1 δn2,m2 − t Ḡ(n1n2,m1m2)r

1, j

− λ
√

n2Ḡ(n1n2−1,m1m2)r
2, j − λ

√
n2 + 1Ḡ(n1n2+1,m1m2)r

2, j . (6)

In the absence of a MW field, the retarded self-energies in the above equations due to the
tunneling into the electric leads are given by

�̄r
α(ε) =

∑

kη,n

|V α
kη,i |2

ε − ε0
kη − αh̄ω0 + i0+ . (7)

Here we have neglected the level shift and assumed the line widths to be energy-independent
constants, �̄r

α(ε) = − i
2 (�L + �R) = − i

2�. The approximation we take to truncate the EOM
is identical to the one used by Meir, Wingreen, and Lee [26] for the Anderson impurity model
without an ac field [7, 27].

In the presence of a MW field, the Keldysh Green function has the form

G(α,α)<(>)(t, t ′) =
∑

η,α′

∫
dε

2π
e−iε(t−t ′)−i

∫ t
t ′ dτ�η(τ)�<(>)

η,α (ε)A(α,α′)r
η (ε, t)[A(α,α′)r

η (ε, t ′)]∗, (8)

2 In the general non-equilibrium situation, all the Green functions depend separately on the two tie variables t and t ′.
However, since we are interested here in a stationary situation they depend only on (t − t ′).
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where

A(α,α′)r
η (ε, t) =

∫ t

−∞
dt1

∫
dε ′

2π
ei(ε′−ε)(t−t1)−i

∫ t
t1

dτ�η(τ)Ḡ(α,α′)r (ε ′)

= exp

[
−i

�η

�
sin �t

] ∞∑

l=−∞
Jl

(
�η

�

)
Ḡ(α,α′)r (ε − l�). (9)

Here Jl is the lth order Bessel function. After some algebra, we obtain

J (t) = e

h
�L�R

∫
dε �α,α′ |A(α,α′)r

R |2{Pα f α
L (ε)[1 − f α′

R (ε)] − Pα′ f α′
R (ε)[(1 − f α

L )]}, (10)

where f α
η (ε) ≡ [1 + exp(ε + αh̄ω0 − μη)/kBT ]−1 is the Fermi distribution function of the

αth pseudo-channel in the η lead, μη is the chemical potential that is different for the left and
right leads upon a voltage bias V , i.e. μL − μR = eV . This gives the average incident current
at a probe in terms of total reflection and transmission probabilities. Meanwhile, we have the
transmission rate in the presence of the MW field:

Ttot(ε) = �L�R

∑

α,α′
Pα

∞∑

l=−∞
J 2

l

(
�R

�

)
|Ḡ(α,α′)r

L→R (ε)|2. (11)

3. Numerical results

Numerical results have been obtained for the coupled double QD molecule both in the absence
and in the presence of a MW irradiation field. For simplicity, we consider that the tunneled
coupling between the double QD molecule and the two leads is symmetric �L = �R = �/2,
with the same MW field intensity �L = �R = � [24]. In our calculation the interdot hopping
t = 1 is set as the unit of energy. The maximum number of allowed phonon quanta Nphonon

is chosen in relation to the energy of the Einstein phonon mode, the EPI constant, and the
temperature of the system under investigation. As we are concerned with these parameters in
the present paper, we choose Nphonon = 5, which gives convergent results.

3.1. Transmission probability

In figure 1 we show the total transmission rate as a function of the incoming electron energy
ε at zero temperature under different MW irradiation fields with a fixed intensity � = 0.8.
The pairs of numbers (Nphoton, Nphonon) located around the peaks indicate the number of
photons that the electron absorbs (positive) or emits (negative) and the mean number of
excited phonons (〈b†b〉) [1], respectively. In the absence of phonons and photons there are
two resonant peaks at ε = ±1 in the energy spectrum which represent the bonding and
anti-bonding resonant energy levels. We first consider the case in which there exists only
the time-dependent potential ε(t) which drives the central molecule. The result is shown as
a solid line in figure 1(a). We see that the two main resonant peaks are unaffected by the
MW field, while some side peaks appear symmetrically around the two peaks at the position
ε ′ = ε ± Nphoton�, (Nphoton = 0,±1,±2, . . .) since the electron could absorb or emit photons
during the process. The heights of the satellite peaks decrease while more photons are emitted
or absorbed. Pure photon absorption peaks can be seen in the left side of the resonant regime
due to the fact that photon mode is independent of temperature, in contrast with the phonon
case [1].

For a comparison, we now see the case without a MW field but with e–p interaction; we
show the result as a dashed line in figure 1(a). The energy shift of the resonant peaks is due
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Figure 1. Transmission rate as a function of incident electron energy for different irradiations at
zero temperature. As a comparison, in (a) we show the result when the e–p interaction is turned off
(solid line) and when no MW field is present (dashed line). The intensity of the irradiation is fixed at
� = 0.8. The pair of numbers in brackets denotes the numbers for emission (positive) or absorption
(negative) of photons and phonons, respectively, involved in the tunneling process. The numbers
above these brackets in (a) give the value of incident energies corresponding to these peaks. The
model parameters are taken as λ = 0.8, ω0 = 1.2 and � = 0.05.

to the polaron effect which is produced by the phonon cloud [1]. The magnitude of the shift
increases with the increase of λ2, as well as with the decrease of ω0. At zero temperature there
is no emission phonon mode on the energy spectrum. The peaks are located on the right side of
the resonant peak because no phonon exists at the molecule before the scattering [4, 6, 10, 11].
The first resonant peak A0 as well as other peaks in the series of An stay almost unchanged
with different values of phonon frequency ω0. But the resonant peak B0 as well as other peaks
in the series Bn are changed significantly. Our former work [1] has clearly interpreted such
phenomena. Due to the symmetry of the two-dot exchange, the eigenstates are either symmetric
or anti-symmetric. There is only level crossing between different symmetric states and no
crossing for the states of the same symmetry. The two most weighted peaks in the transmission
spectrum are not simply evolved from the two peaks in the absence of the e–p interaction.
The first one (indicated by A0) is caused by the first symmetric state, which is evolved from a
bonding state. The energy of the resonant peak An is ε(An) = ε0 − t − λ2/ω0 + nω0 which
correspond to the first symmetric state with n phonons. Similarly the series of Bn with the
energy ε(Bn) = ε0 + t − λ2/ω0 + nω0 represents the processes accompanying the emission
of n bare phonons. The peak C emerging at ε = −0.52 is due to the first anti-symmetric state
of the number of excited phonons, 0.823. The strength of the resonant transmission decreases
with the increase in the number of excited phonons.

Now we turn to the case in which e–p interaction and the MW field are both turned on; a
direct consequence is that many more resonant peaks are observed. Due to the process of one-
photon emission from the state A1, one new peak (−1, 1) appears between the resonant peak
A0 and the first phonon satellite peak C for the case of lower MW frequency (� = 0.8 < ω0

(figure 1(b))), which shows a qualitative agreement with the experiment result [16]. Since
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Figure 2. Transmission rate as a function of the incident electron energy calculated for different
irradiations at zero temperature: in (a) and (c) the frequency of irradiation is � = 0.4, lower than
that of phonons; in (b) and (d) the frequency of irradiation is � = 1.6, larger than that of phonons.
The intensities of the irradiations are � = 0.4 ((a), (b)) and � = 1.6 ((c), (d)), respectively. All
other parameters are the same as in figure 1. Please note that the transmission rate is shown on a
logarithmic scale.

the first phonon satellite peak C is superposed by the first absorption state of the resonant
peak A0, the peak becomes more intense. The other phonon peaks are also accompanied
by emission/absorption of photons. Such photon-assisted multi-phonon processes lead to the
appearance of some new pseudo-channels that contribute to tunneling, as shown in figures 1(b)–
(d). When the photon frequency � is equal to that of phonon frequency ω0 in figure 1(c), the
resonant peaks are superposed by both photon and/or phonon absorption/emission together.
The one-phonon absorption peaks (A1, B1) in particular are greatly strengthened by the
superposition of the corresponding one-photon absorption processes. If the frequency of the
MW field is higher than that of the phonon, no phonon absorption process takes place between
the main resonant phonon peak (A0) and the first phonon peak (C) (see figure 1(d)) because
there is insufficient energy exciting the higher frequency photon.

By comparing the time-average transmissions of two different intensities of the MW
field, shown in figure 2, we can see more a complicated peak distribution appearing in the
transmission spectrum. It is clearly seen that increasing the intensity of the MW field will
enhance the photon-assisted processes. For example, for the MW fields of frequencies � = 0.4
and 1.6 with intensity � = 0.4 and 1.6, in figure 2, we obviously observe more peaks with
higher amplitudes involving the emission and absorption of photons.

3.2. Current and differential conductance

We now calculate the current of the tunneling process for the system. In the first row of figure 3,
we plot the time-average current as a function of the bias voltage V between the two leads. The
Fermi level at the right lead was set to locate at ER = −5 eV, and a bias voltage V was applied
on the left lead (i.e. μL = ER+eV , μR = ER). The appearance of the steps in figure 3 indicates

7
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Figure 3. The time-average current I and the corresponding differential conductance dI/dV as a
function of the applied bias voltage under various irradiations. All other parameters are the same as
in figure 1.

(This figure is in colour only in the electronic version)

the existence of new satellite peaks in transmission due to the tunneling process discussed
above. As mentioned above, more photon–phonon-assisted tunneling resonances are observed
when the intensity of ac field is stronger, which is clearly seen in the first row of figure 3.

In the second row of figure 3, we show the differential conductance (dI/dV ) with the
same model parameters and external field as the corresponding figures in the first row. Due
to its proportionality to Ttot (eV ), the differential conductance (dI/dV ) plotted as functions of
the voltage in figure 3 exhibits resonant peaks corresponding to the peaks at ε = eV + ER in
figure 2. As one can see, the differential conductance is more distinguishable for the resonant
transmission (shown as peaks) than in the I –V curve (shown as steps). That implies that a
possible way to experimentally demonstrate the photon–phonon-assisted tunneling may be by
measuring the differential conductance dI/dV . Integrating the total transmission probability
over incident energies,

∫
dε Ttot(ε) is independent of electron–phonon interaction and the

presence of a MW irradiation field, which indicates that a sum rule exists in the differential
conductance. Here we assume that the voltage bias is sufficiently high and all the filled states
in the two leads are taken into account. The height of the resonant peaks is greatly manipulated
by the intensity of the MW field. In figure 3(c), one clearly sees that the two main resonant
peaks (A0, B0) and the two corresponding one-phonon peaks (A1, B1) are obviously weakened,
while those of photons are greatly strengthened for the large-intensity case. That is not so
obvious for a large photon energy (� = 1.6) in figure 3(d) due to the sum rule. Increasing
the intensity of the MW field, the resonant peaks due to the photon absorption or emission are
enhanced while all other peaks irrelevant to photons are depressed concurrently.

The microwave spectroscopy experiments on the double QD devices could be applied to
test the results in our work. The current and differential conductance as functions of bias
voltage in an artificial molecule of double coupled QD system under microwave irradiation
could be taken in comparison with the curves in this study. Though the same experiment

8
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is not available now, some previous experimental work on the transport properties of double
QD devices could be taken, such as [16–18], and our results show good qualitative agreement
with the literature. Fujisawa et al observed phonon-assisted satellite peaks in the differential
conductance spectrum (−dI/dε figure 3(A) in [18]) which could be explained by the results of
phonon-assisted tunneling in our work; in the study of MW spectroscopy of double QD devices
from the same group [17], the MW photon frequency-dependent double peaks appear on the
current curves as a function of the voltage of the left QD (figure 1(c) in [17]), which is similar
to our calculation results (figure 1(a)); Qin et al observed the superposition of the photon-
and phonon-assisted tunneling phenomena very recently [16]. Moreover, in order to observe
the photon–phonon-assisted tunneling phenomena unambiguously, the experiment should be
performed at an extremely low temperature as the thermal effect may cause a decrease of the
differential conductance and a low signal/noise ratio.

4. Summary

In summary, we have discussed the low-temperature time-dependent resonant tunneling
through a double QD system coupled to a local phonon mode in a MW field theoretically.
The method of the photon–phonon-assisted tunneling in a single QD system proposed by Dong
et al [7] was expanded to a coupled double QD system by projecting the original Hamiltonian
in the representation of electron–phonon coupled Fock space. The time-average current and
differential conductance calculated by the NGF method exhibits peaks of the phonon-assisted
and photon–phonon-assisted tunneling through the double QD system with MW field radiation.
The processes of phonon emission and absorption are of great importance to the tunneling in
the quantum system with an external MW field that is also controllable by an adjustable bias
voltage.
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[2] Bonča J and Trugman S A 1995 Phys. Rev. Lett. 75 2566
[3] Vasilevskiy M I, Anda E V and Makler S S 2004 Phys. Rev. B. 70 035318
[4] Wingreen N S, Jacobsen K W and Wilkins J W 1989 Phys. Rev. B 40 11834
[5] Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528
[6] Zhu J X and Balatsky A V 2003 Phys. Rev. B 67 165326
[7] Dong B, Cui H L and Lei X L 2004 Phys. Rev. B 69 205315
[8] Dong B, Cui H L, Lei X L and Horing N J M 2005 Phys. Rev. B 71 045331
[9] Mourokh L G, Horing N J M and Smirnov A Y 2002 Phys. Rev. B 66 085332

[10] Král P 1997 Phys. Rev. B 56 7293
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